big data

Widespread use of digital technologies, the Internet and social media means both citizens and governments leave digital traces that can be harvested to generate big data.

The environment in which public policy is made has entered a period of dramatic change. Widespread use of digital technologies, the Internet and social media means both citizens and governments leave digital traces that can be harvested to generate big data. Policy-making takes place in an increasingly rich data environment, which poses both promises and threats to policy-makers. On the promise side, such data offers a chance for policy-making and implementation to be more citizen-focused, taking account of citizens’ needs, preferences and actual experience of public services, as recorded on social media platforms. As citizens express policy opinions on social networking sites such as Twitter and Facebook; rate or rank services or agencies on government applications such as NHS Choices; or enter discussions on the burgeoning range of social enterprise and NGO sites, such as Mumsnet, 38 degrees and patientopinion.org, they generate a whole range of data that government agencies might harvest to good use. Policy-makers also have access to a huge range of data on citizens’ actual behaviour, as recorded digitally whenever citizens interact with government administration or undertake some act of civic engagement, such as signing a petition. Data mined from social media or administrative operations in this way also provide a range of new data which can enable government agencies to monitor—and improve—their own performance, for example through log usage data of their own electronic presence or transactions recorded on internal information systems, which are increasingly interlinked. And they can use data from social media for self-improvement, by understanding what people are saying about government, and which policies, services or providers are attracting negative opinions and complaints, enabling identification of a failing school, hospital or contractor, for example. They can solicit such data via their own sites, or those of social enterprises. And they can find out what people are concerned about or looking for, from the Google Search API or Google trends, which record the search…

While traditional surveillance systems will remain the pillars of public health, online media monitoring has added an important early-warning function, with social media bringing additional benefits to epidemic intelligence.

Communication of risk in any public health emergency is a complex task for healthcare agencies; a task made more challenging when citizens are bombarded with online information. Mexico City, 2009. Image by Eneas.

Ed: Could you briefly outline your study? Patty: We investigated the role of Twitter during the 2009 swine flu pandemics from two perspectives. Firstly, we demonstrated the role of the social network to detect an upcoming spike in an epidemic before the official surveillance systems—up to week in the UK and up to 2-3 weeks in the US—by investigating users who “self-diagnosed” themselves posting tweets such as “I have flu/swine flu.” Secondly, we illustrated how online resources reporting the WHO declaration of “pandemics” on 11 June 2009 were propagated through Twitter during the 24 hours after the official announcement [1,2,3]. Ed: Disease control agencies already routinely follow media sources; are public health agencies  aware of social media as another valuable source of information? Patty:  Social media are providing an invaluable real-time data signal complementing well-established epidemic intelligence (EI) systems monitoring online media, such as MedISys and GPHIN. While traditional surveillance systems will remain the pillars of public health, online media monitoring has added an important early-warning function, with social media bringing additional benefits to epidemic intelligence: virtually real-time information available in the public domain that is contributed by users themselves, thus not relying on the editorial policies of media agencies. Public health agencies (such as the European Centre for Disease Prevention and Control) are interested in social media early warning systems, but more research is required to develop robust social media monitoring solutions that are ready to be integrated with agencies’ EI services. Ed: How difficult is this data to process? E.g.: is this a full sample, processed in real-time? Patty:  No, obtaining all Twitter search query results is not possible. In our 2009 pilot study we were accessing data from Twitter using a search API interface querying the database every minute (the number of results was limited to 100 tweets). Currently, only 1% of the ‘Firehose’ (massive real-time stream of all public tweets) is made available using the streaming API. The searches have…

The Middle East and North Africa are relatively under-represented in Wikipedia. Even after accounting for factors like population, Internet access, and literacy, we still see less contact than would be expected.

Editors from all over the world have played some part in writing about Egypt; in fact, only 13% of all edits actually originate in the country (38% are from the US). More: Who edits Wikipedia? by Mark Graham. Ed: In basic terms, what patterns of ‘information geography’ are you seeing in the region? Mark: The first pattern that we see is that the Middle East and North Africa are relatively under-represented in Wikipedia. Even after accounting for factors like population, Internet access, and literacy, we still see less contact than would be expected. Second, of the content that exists, a lot of it is in European and French rather than in Arabic (or Farsi or Hebrew). In other words, there is even less in local languages. And finally, if we look at contributions (or edits), not only do we also see a relatively small number of edits originating in the region, but many of those edits are being used to write about other parts of the word rather than their own region. What this broadly seems to suggest is that the participatory potentials of Wikipedia aren’t yet being harnessed in order to even out the differences between the world’s informational cores and peripheries. Ed: How closely do these online patterns in representation correlate with regional (offline) patterns in income, education, language, access to technology (etc.) Can you map one to the other? Mark: Population and broadband availability alone explain a lot of the variance that we see. Other factors like income and education also play a role, but it is population and broadband that have the greatest explanatory power here. Interestingly, it is most countries in the MENA region that fail to fit well to those predictors. Ed: How much do you think these patterns result from the systematic imposition of a particular view point—such as official editorial policies—as opposed to the (emergent) outcome of lots of users and editors…

Bringing together leading social science academics with senior government agency staff to discuss its public policy potential.

Last week the OII went to Harvard. Against the backdrop of a gathering storm of interest around the potential of computational social science to contribute to the public good, we sought to bring together leading social science academics with senior government agency staff to discuss its public policy potential. Supported by the OII-edited journal Policy and Internet and its owners, the Washington-based Policy Studies Organization (PSO), this one-day workshop facilitated a thought-provoking conversation between leading big data researchers such as David Lazer, Brooke Foucault-Welles and Sandra Gonzalez-Bailon, e-government experts such as Cary Coglianese, Helen Margetts and Jane Fountain, and senior agency staff from US federal bureaus including Labor Statistics, Census, and the Office for the Management of the Budget. It’s often difficult to appreciate the impact of research beyond the ivory tower, but what this productive workshop demonstrated is that policy-makers and academics share many similar hopes and challenges in relation to the exploitation of ‘big data’. Our motivations and approaches may differ, but insofar as the youth of the ‘big data’ concept explains the lack of common language and understanding, there is value in mutual exploration of the issues. Although it’s impossible to do justice to the richness of the day’s interactions, some of the most pertinent and interesting conversations arose around the following four issues. Managing a diversity of data sources. In a world where our capacity to ask important questions often exceeds the availability of data to answer them, many participants spoke of the difficulties of managing a diversity of data sources. For agency staff this issue comes into sharp focus when available administrative data that is supposed to inform policy formulation is either incomplete or inadequate. Consider, for example, the challenge of regulating an economy in a situation of fundamental data asymmetry, where private sector institutions track, record and analyse every transaction, whilst the state only has access to far more basic performance metrics and accounts.…

Social media monitoring, which in theory can extract information from tweets and Facebook posts and quantify positive and negative public reactions to people, policies and events has an obvious utility for politicians seeking office.

GOP presidential nominee Mitt Romney, centre, waving to crowd, after delivering his acceptance speech on the final night of the 2012 Republican National Convention. Image by NewsHour.

Recently, there has been a lot of interest in the potential of social media as a means to understand public opinion. Driven by an interest in the potential of so-called “big data”, this development has been fuelled by a number of trends. Governments have been keen to create techniques for what they term “horizon scanning”, which broadly means searching for the indications of emerging crises (such as runs on banks or emerging natural disasters) online, and reacting before the problem really develops. Governments around the world are already committing massive resources to developing these techniques. In the private sector, big companies’ interest in brand management has fitted neatly with the potential of social media monitoring. A number of specialised consultancies now claim to be able to monitor and quantify reactions to products, interactions or bad publicity in real time. It should therefore come as little surprise that, like other research methods before, these new techniques are now crossing over into the competitive political space. Social media monitoring, which in theory can extract information from tweets and Facebook posts and quantify positive and negative public reactions to people, policies and events has an obvious utility for politicians seeking office. Broadly, the process works like this: vast datasets relating to an election, often running into millions of items, are gathered from social media sites such as Twitter. These data are then analysed using natural language processing software, which automatically identifies qualities relating to candidates or policies and attributes a positive or negative sentiment to each item. Finally, these sentiments and other properties mined from the text are totalised, to produce an overall figure for public reaction on social media. These techniques have already been employed by the mainstream media to report on the 2010 British general election (when the country had its first leaders debate, an event ripe for this kind of research) and also in the 2012 US presidential election. This…

In a similar way that economists have traditionally excluded unpaid domestic labour from national accounts, most African states only scratched the surface of their populations’ true economic lives.

State research capacity has been weakened since the 1980s. It is now hoped that the 'big data' generated by mobile phone use can shed light on African economic and social issues, but we must pay attention to what new technologies are doing to the bigger research environment. Image by Nicki Kindersley.

As Linnet Taylor’s recent post on this blog has argued, researchers are gaining interest in Africa’s big data. Linnet’s excellent post focused on what the profusion of big data might mean for privacy concerns and frameworks for managing personal data. My own research focuses on the implications of big (and open) data on knowledge about Africa; specifically, economic knowledge. As an introduction, it might be helpful to reflect on the French colonial concepts of l’Afrique utile and l’Afrique inutile (concepts most recently re-invoked by William Reno in 1999 and James Ferguson in 2005). L’Afrique utile, or usable Africa represented parts of Africa over which private actors felt they could exercise a degree of governance and control, and therefore extract profit. L’Afrique inutile, on the other hand, was the no-go area: places deemed too risky, too opaque and too wild for commercial profit. Until recently, it was difficult to convince multinationals to view Africa as usable and profitable because much economic activity took place in the unaccounted informal economy. With the exception of a few oil, gas and mineral installations and some export commodities like cocoa, cotton, tobacco, rubber, coffee, and tea, multinationals stayed out of the continent. Likewise, within the accounts of national public policy-making institutions, it was only the very narrow formal and recordable parts of the economy that were recorded. In a similar way that economists have traditionally excluded unpaid domestic labour from national accounts, most African states only scratched the surface of their populations’ true economic lives. The mobile phone has undoubtedly changed the way private companies and public bodies view African economies. Firstly, the mobile phone has demonstrated that Africans can be voracious consumers at the bottom of the pyramid (paving the way for the distribution of other low-cost items such as soap, sanitary pads, soft drinks, etc.). While the colonial scramble for Africa focused on what lay in Africa’s lands and landscapes, the new scramble…

As Africa goes digital, the challenge for policymakers becomes moving from digitisation to managing and curating digital data in ways that keep people’s identities and activities secure.

Africa is in the midst of a technological revolution, and the current wave of digitisation has the potential to make the continent’s citizens a rich mine of data. Intersection in Zomba, Malawi. Image by john.duffell.

After the last decade’s exponential rise in ICT use, Africa is fast becoming a source of big data. Africans are increasingly emitting digital information with their mobile phone calls, internet use and various forms of digitised transactions, while on a state level e-government starts to become a reality. As Africa goes digital, the challenge for policymakers becomes what the WRR, a Dutch policy organisation, has identified as ‘i-government’: moving from digitisation to managing and curating digital data in ways that keep people’s identities and activities secure. On one level, this is an important development for African policymakers, given that accurate information on their populations has been notoriously hard to come by and, where it exists, has not been shared. On another, however, it represents a tremendous challenge. The WRR has pointed out the unpreparedness of European governments, who have been digitising for decades, for the age of i-government. How are African policymakers, as relative newcomers to digital data, supposed to respond? There are two possible scenarios. One is that systems will develop for the release and curation of Africans’ data by corporations and governments, and that it will become possible, in the words of the UN’s Global Pulse initiative, to use it as a ‘public good’—an invaluable tool for development policies and crisis response. The other is that there will be a new scramble for Africa: a digital resource grab that may have implications as great as the original scramble amongst the colonial powers in the late 19th century. We know that African data is not only valuable to Africans. The current wave of digitisation has the potential to make the continent’s citizens a rich mine of data about health interventions, human mobility, conflict and violence, technology adoption, communication dynamics and financial behaviour, with the default mode being for this to happen without their consent or involvement, and without ethical and normative frameworks to ensure data protection or to weigh…

Despite large investments of law enforcement resources, online child exploitation is nowhere near under control, and while there are numerous technological products to aid this, they still require substantial human intervention.

The Internet has provided the social, individual, and technological circumstances needed for child pornography to flourish. Sex offenders have been able to utilise the Internet for dissemination of child pornographic content, for social networking with other pedophiles through chatrooms and newsgroups, and for sexual communication with children. A 2009 estimate by the United Nations estimates that there are more than four million websites containing child pornography, with 35 percent of them depicting serious sexual assault [1]. Even if this report or others exaggerate the true prevalence of those websites by a wide margin, the fact of the matter is that those websites are pervasive on the world wide web. Despite large investments of law enforcement resources, online child exploitation is nowhere near under control, and while there are numerous technological products to aid in finding child pornography online, they still require substantial human intervention. Despite this, steps can be taken to increase the automation process of these searches, to reduce the amount of content police officers have to examine, and increase the time they can spend on investigating individuals. While law enforcement agencies will aim for maximum disruption of online child exploitation networks by targeting the most connected players, there is a general lack of research on the structural nature of these networks; something we aimed to address in our study, by developing a method to extract child exploitation networks, map their structure, and analyse their content. Our custom-written Child Exploitation Network Extractor (CENE) automatically crawls the Web from a user-specified seed page, collecting information about the pages it visits by recursively following the links out of the page; the result of the crawl is a network structure containing information about the content of the websites, and the linkages between them [2]. We chose ten websites as starting points for the crawls; four were selected from a list of known child pornography websites while the other six were selected and…