MOOCs

Despite the hype around MOOCs to date, there are many similarities between MOOC research and the breadth of previous investigations into (online) learning.

Timeline of the development of MOOCs and open education, from: Yuan, Li, and Stephen Powell. MOOCs and Open Education: Implications for Higher Education White Paper. University of Bolton: CETIS, 2013.

Ed: Does research on MOOCs differ in any way from existing research on online learning? Rebecca: Despite the hype around MOOCs to date, there are many similarities between MOOC research and the breadth of previous investigations into (online) learning. Many of the trends we’ve observed (the prevalence of forum lurking; community formation; etc.) have been studied previously and are supported by earlier findings. That said, the combination of scale, global-reach, duration, and “semi-synchronicity” of MOOCs have made them different enough to inspire this work. In particular, the optional nature of participation among a global-body of lifelong learners for a short burst of time (e.g. a few weeks) is a relatively new learning environment that, despite theoretical ties to existing educational research, poses a new set of challenges and opportunities. Ed: The MOOC forum networks you modelled seemed to be less efficient at spreading information than randomly generated networks. Do you think this inefficiency is due to structural constraints of the system (or just because inefficiency is not selected against); or is there something deeper happening here, maybe saying something about the nature of learning, and networked interaction? Rebecca: First off, it’s important to not confuse the structural “inefficiency” of communication with some inherent learning “inefficiency”. The inefficiency in the sub-forums is a matter of information diffusion—i.e., because there are communities that form in the discussion spaces, these communities tend to “trap” knowledge and information instead of promoting the spread of these ideas to a vast array of learners. This information diffusion inefficiency is not necessarily a bad thing, however. It’s a natural human tendency to form communities, and there is much education research that says learning in small groups can be much more beneficial / effective than large-scale learning. The important point that our work hopes to make is that the existence and nature of these communities seems to be influenced by the types of topics that are being discussed…

while a lot is known about the mechanics of group learning in smaller and traditionally organised online classrooms, fewer studies have examined participant interactions when learning “at scale.”

Millions of people worldwide are currently enrolled in courses provided on large-scale learning platforms (aka ‘MOOCs’), typically collaborating in online discussion forums with thousands of peers. Current learning theory emphasises the importance of this group interaction for cognition. However, while a lot is known about the mechanics of group learning in smaller and traditionally organised online classrooms, fewer studies have examined participant interactions when learning “at scale.” Some studies have used clickstream data to trace participant behaviour; even predicting dropouts based on their engagement patterns. However, many questions remain about the characteristics of group interactions in these courses, highlighting the need to understand whether—and how—MOOCs allow for deep and meaningful learning by facilitating significant interactions. But what constitutes a “significant” learning interaction? In large-scale MOOC forums, with socio-culturally diverse learners with different motivations for participating, this is a non-trivial problem. MOOCs are best defined as “non-formal” learning spaces, where learners pick and choose how (and if) they interact. This kind of group membership, together with the short-term nature of these courses, means that relatively weak inter-personal relationships are likely. Many of the tens of thousands of interactions in the forum may have little relevance to the learning process. So can we actually define the underlying network of significant interactions? Only once we have done this can we explore firstly how information flows through the forums, and secondly the robustness of those interaction networks: in short, the effectiveness of the platform design for supporting group learning at scale. To explore these questions, we analysed data from 167,000 students registered on two business MOOCs offered on the Coursera platform. Almost 8000 students contributed around 30,000 discussion posts over the six weeks of the courses; almost 30,000 students viewed at least one discussion thread, totalling 321,769 discussion thread views. We first modelled these communications as a social network, with nodes representing students who posted in the discussion forums, and edges (ie links) indicating…